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Abstract

We introduce a novel framework to understand how race, suspect behavior, and policing
scenario impact police officers’ decision to shoot. We report four principle results with a
sample of police officers from the Milwaukee Police Department (N=659) that illustrate
the utility of this framework: (1) policing scenario and suspect behavior played
important roles in officers’ decisions; (2) the effect of race on shooting errors depended
on whether suspects behaved in an antagonistic or nonantagonistic way; (3) cognitive
modeling showed this effect of race was not due to initial biases to shoot Black suspects
but instead due to differences in how evidence was gathered between Black and White
suspects; and (4) no credible effects of race were observed on response times.
Exploration of the data suggests that the race effect may, in part, be due to behaviors
performed by particular suspects in specific scenarios. This work provides a novel
method and analytic approach for understanding how officers integrate multiple pieces
of information during the decision to shoot and how these different sources of
information can impact the decision in different ways at different stages. We emphasize
that the current report cannot answer the broad question of “Are police in general
biased?,” but instead is a means to study how officers make deadly force decisions in
specific policing scenarios. This sets the stage for researchers and practitioners to obtain
the data necessary for designing effective training interventions.

Introduction 1

Police use of deadly force remains a pressing topic in the U.S. As a result, the question 2

of how officers make the decision to shoot and how factors such as race impact this 3

decision has been of immense interest to researchers across several disciplines. Two 4

main approaches have been taken to understand a police officer’s decision to shoot: a 5

laboratory-based approach where officers make a series of decisions in a controlled 6

laboratory setting and an archival-based approach that analyzes actual officer-involved 7

shootings. Each approach brings distinct advantages as well as disadvantages. 8

The laboratory-based approach comes mainly from psychology and uses controlled 9

laboratory tasks to test for racial bias in the decision to shoot (1; 2; 3). In these tasks, 10

participants typically see static images on a computer screen of Black or White men 11

holding guns or harmless objects. If the suspect is holding a gun, participants are 12

instructed to press a button labeled “Shoot;” otherwise, they press a button labeled 13
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“Don’t Shoot.” Participants make these decisions across many trials. The precision and 14

control of these tasks allow researchers to study how race impacts the underlying 15

decision process, with the typical explanation that automatic activation of the 16

Black-violent stereotype makes people more likely or faster to “Shoot.” The most 17

consistent result is that civilian participants (undergraduate students or untrained 18

community members) “Shoot” the armed Black suspects faster than White suspects and 19

“Don’t Shoot” unarmed Black suspects slower than White suspects (2; 4). Some studies 20

also report that under time pressure participants choose “Shoot” for the Black suspects 21

at a greater rate than for White suspects (4; 5; 6; 7; 8), but this effect appears less 22

reliable across studies (2). Trained officers have been found to only exhibit response 23

time differences or show no racial differences at the behavioral level in the decision to 24

shoot (9; 10; 11; 12; 13; 14). 25

A limitation of this line of research may be the framing of the question itself. By 26

solely focusing on whether officers are more likely to shoot unarmed Black men, the 27

experimental task has centered on manipulating race. But this focus has come at the 28

expense of simplifying or removing factors that officers use when deciding to shoot, such 29

as information about the situation and their interaction with the suspect (1; 10). 30

Removing this information from experimental tasks may constrain the generalizability 31

of conclusions from these studies to actual use-of-force decisions, a limitation that is 32

particularly concerning when it comes to the issue of whether race plays a role in 33

deciding to shoot. 34

One alternative to the experimental approach is to study deadly force decisions by 35

analyzing actual officer-involved shootings. This archival approach has been primarily 36

taken by researchers in criminal justice. In contrast to the experimental approach, this 37

approach has asked broader questions about the impact of multiple factors on officers’ 38

decisions, including the nature of the policing scenario and a suspect’s behavior. Such 39

work has shown that (1) situational factors such as the risk level of the encounter or the 40

aggressiveness of the suspect are strongly associated with officers’ decisions to shoot and 41

(2) racial disparities in being fatally shot decrease once these factors are taken into 42

account (15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26). 43

The archival-based approach is not without its limitations as well. First, this 44

approach offers no possibility for directly studying the cognitive dynamics underlying a 45

given officer’s decision to use deadly force, as the lack of experimental control and 46

infrequency of shootings preclude such questions from being asked. Second, although 47

this approach does lend itself to quantifying the evidence for a racial effect once 48

different factors are controlled for (such as the context or civilian behavior, demographic 49

characteristics, or criminal activity, e.g., 15; 17; 23), the uniqueness of each shooting 50

situation raises problems. Factors present in one situation may take on a different 51

meaning in another situation, making ostensibly similar events qualitatively different. 52

Thus, even showing that Blacks are more likely to be shot than Whites in a given 53

scenario (e.g., serving a warrant) makes it difficult to draw general conclusions about 54

racial differences. Coupled with significant county-to-county variation in the decision to 55

shoot (27) and the infrequency with which officers fire their weapons, this approach 56

imposes limitations on what can be learned about the decision-making process of 57

officers using deadly force. 58

Thus, a bottleneck exists in understanding officer-involved shootings. On the one 59

hand, controlled laboratory tasks ask a specific question that may miss out on a broader 60

understanding of how officers decide to shoot. On the other hand, archival data analyses 61

suggest that situational factors removed by controlled laboratory tasks play a central 62

role in the decision to shoot but cannot precisely describe how these factors impact 63

officers’ decision processes. Neither approach is especially well-suited to recommending 64

training interventions to reduce fatal shootings or racial disparities therein. 65
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Our approach was to recruit a large sample of officers to make decisions in a 66

shooting simulator similar to those used in law enforcement training (Fig 1). We 67

created the Immersive Shooting Simulator (ISS) to study officers’ deadly force decisions 68

in a repeatable, controlled situation that captures the richer policing scenario 69

surrounding the decision to shoot. During the ISS, officers interacted with suspects 70

according to protocol in life-sized videos shot from a first-person point of view. If the 71

officers decided to use deadly force, they used a modified handgun to shoot. The gun 72

fired with realistic sound and recoil and recorded response times. Scenarios were 73

developed with input from the police and depicted suspects across various scenarios 74

(e.g., traffic stops, arrest warrants). This approach allowed us to quantify the degree to 75

which suspect race and policing scenario independently contributed to officers’ decisions 76

to shoot, and use cognitive modeling to describe the underlying cognitive process as 77

officers made these decisions (described in more detail below). 78

αβ·α δNDT

Shoot

Don’t Shoot
Time

(Time at which the object a suspect draws is �rst visible)t0

0s 5s 10s 15s 20s
Interaction (Before Draw) Interaction (After Draw)

GoDDM

t0

GoDDM

Fig 1. A trial from the ISS. In this scenario, the officer pulls over a suspect for
speeding. The officer talks to the suspect until he reaches into his car, at which time
the officer draws his weapon. At about 13 seconds, the critical object (a cell phone) is
first visible (t0). The shooting decision process was modeled from the point the object
is drawn using the GoDDM (pictured at the bottom) until the decision was made. In
this case, the suspect drew a cell phone and the officer did not shoot.

By moving to a shooting simulator with videos of real policing scenarios, many 79

potential questions arise about how various factors of the scenarios might impact the 80
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decision. Here, we focus on one question: suspect behavior. We assigned four actors 81

(two White men and two Black men) to each scenario. Within each scenario, half the 82

actors were instructed to act antagonistically toward the officer, and half were 83

instructed to act nonantagonistically or in a compliant manner. This decision reflects 84

the concern in prior research, particularly in the criminal justice literature, about 85

suspect behavior and escalation. It also reflects the broad concern about the most tragic 86

type of fatal police shooting, the shooting of unarmed citizens who are not behaving in 87

any aggressive manner (e.g., the fatal officer-involved shooting of Philandro Castile 88

during a traffic stop 28; 29). 89

Finally, some past research has used similar shooting simulators (10; 30). Our work 90

goes beyond this past research by (1) fully crossing suspect race and policing scenario, 91

(2) modeling variation in policing scenario and suspect behavior, (3) modeling the 92

underlying decision process, and (4) recruiting larger officer samples. These features 93

allow us to more precisely estimate the effects of all possible sources of information on 94

the underlying decision process. 95

Materials and methods 96

Participants 97

Sworn officers (N = 659) from the Milwaukee Police Department participated in the 98

study in the Spring of 2017. The project was introduced each morning at officers’ 99

in-service as a study on expert decision-making, focusing on fast shoot/don’t shoot 100

decisions. We emphasized that officers would complete multiple scenarios but did not 101

mention race as a factor we were studying. After this description, officers voluntarily 102

signed up for individual time slots staggered throughout the day. No compensation for 103

participation was given. We collected data from as many officers as possible over the 104

10-week period covering officers’ spring in-service sessions. The department had a total 105

sworn officer body of about 1,800 officers at the time, though in practice, not all 1,800 106

had the opportunity to participate as we were not present every day. 107

Officers completed the self-paced task individually. They saw up to 32 different 108

scenarios. Most officers (75%) completed all trials, and almost all officers (89%) 109

completed at least 24 trials. However, some officers completed fewer trials because they 110

exceeded the 20-minute limit or experienced technical difficulties. We removed trials 111

where officers responded before the object was first visible (60), responses that were 112

more than three standard deviations above the mean response time for a scenario (127), 113

or where the gun malfunctioned (97). In total, of the 19,600 total observations, we 114

removed 284 trials (1.44%). Our analyses are based on the final sample of 19,316 trials. 115

Analyses of the full data set led to the same conclusions. These regressions are available 116

on the OSF site. 117

We visually determined that 592 (90%) of these officers were men and 484 (73%) 118

were White, 103 (16%) were Black, 55 (8%) were Hispanic, 14 (2%) were Asian, and 3 119

(1%) were from other groups. Sample demographics were fairly representative of the 120

department, although White officers were overrepresented (73% compared to 63% in the 121

department). In total, 94% of the officers reported that they had an average of 11 years 122

as a sworn officer (SD = 7, range = 0 – 25). 123

Procedures 124

Officers were told that the research aimed to understand how experts make fast 125

decisions, particularly regarding object identification and the decision to shoot. Officers 126

were told they would watch a series of policing scenarios and were instructed to interact 127
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with suspects as they would on the job. Officers were informed that if a suspect in the 128

video pulled a gun, he would fire it at the officer, and they should fire the modified 129

handgun at the suspect. Officers provided consent to have their data used for research 130

purposes and were then asked to consent for their session to be filmed. Officers began 131

each trial with the handgun holstered and read the dispatch information displayed on 132

the screen at their own pace. When they indicated they had read the information, the 133

trial began. After each trial, officers re-holstered their guns, and dispatch information 134

for the next scenario was displayed. Officers were thanked and dismissed after 135

completing all trials or the allotted twenty minutes. 136

Materials 137

Shooting simulator 138

Scenarios were displayed using a custom-built shooting simulator similar to commercial 139

law enforcement training simulators. Videos were projected at near life-size. Officers 140

began each trial roughly 15 feet from the screen and were encouraged to talk to suspects 141

and move around as needed. Shooting responses in the simulator were made using a 142

Glock handgun, modified with a Dvorak Air Recoil System. This system replaces the 143

magazine and barrel of the handgun with a compressed CO2 system, which cycles the 144

gun as normal and provides recoil when the trigger is pulled. We further modified the 145

system so that each trigger pull activated a microcontroller signaling to the computer 146

that the trigger was pulled with near-millisecond accuracy. The signal prompted the 147

computer to play the sound of a Glock handgun firing a live round through a set of 148

speakers placed near the screen. All aspects of video presentation and response 149

recording were controlled with PsychoPy (31). Detailed plans can be found at the OSF 150

page. 151

Video scenarios 152

We collaborated with the Milwaukee Police Department to design and film a set of 153

realistic scenarios commonly encountered by officers. We filmed eight scenarios (see full 154

descriptions in the Supplemental Online Materials). Scenarios were filmed from the 155

point of view of the officer and lasted around 20 seconds. All scenarios had a similar 156

structure. After an initial interaction with a suspect there were two pivotal moments: 157

One in which the suspect would perform an ambiguous action that raised the threat 158

level for the officer (e.g., reaching into a glove box), and another in which the suspect 159

would draw either a harmless object or a firearm. It was at this point officers had to 160

decide to shoot. If the suspect in the video drew a firearm, he always shot at the officer. 161

Officers were under time pressure—the suspect always fired the gun within one second 162

after it was drawn. Although the specific draw time varied across scenarios, within each 163

scenario, draw time was digitally manipulated to be equal within one video frame across 164

suspect races.1 165

We employed ten Black male actors and ten White male actors as suspects. Each 166

actor was filmed twice per scenario (across at most two different scenarios). In one 167

video, the actor drew a handgun and fired at the officer; in the other, they revealed a 168

harmless object such as a wallet or cellphone. Within a scenario, actors were matched 169

in age, height, and clothing type, which was non-diagnostic of socioeconomic status. 170

We also manipulated the degree to which suspects escalated the interaction by 171

acting antagonistic or non-antagonistic. Within each scenario, one version was produced 172

1The simulator was programmed so that if a participant completed the 32 trials, then there would be
an equal number of trials (4) across the conditions formed by crossing the race by object by antagonistic
manipulations. Due to a computer error, the first nine participants had five observations in the black,
nongun, antagonistic condition.
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with the actor acting in an antagonistic manner toward the police, and one version was 173

produced with a different actor acting in a non-antagonistic manner toward the police. 174

For example, in a pullover scenario, one version had an actor exiting his car swearing at 175

the officer, and one had an actor exiting his car with his hands raised and pleading with 176

the officer. This manipulation was fully crossed with race and armed status within each 177

scenario. 178

Before each scenario, officers were given basic dispatch information about the reason 179

for being at the scene. Dispatch information was randomly varied and blocked within 180

the scenario. In all, we created 64 different videos from the eight scenarios. Each 181

scenario had an antagonistic and non-antagonistic version, crossed by suspect race 182

(White, Black) and armed status (unarmed, armed). Officers saw half of these videos, 183

randomized such that officers could not predict whether a suspect was armed or not 184

based on which versions of each scenario they had already seen. 185

Measures 186

On each trial, we recorded whether an officer fired the gun, the response time associated 187

with the first shot, and the number of shots fired. For officers who consented to be 188

filmed (95%), we also coded whether and when they grabbed their weapons. For the 189

weapon grab data, we only coded the first eight trials of the task to avoid anticipation 190

effects that might occur when an officer sees the same scenario again later in the task. 191

We were able to code 90% of the 4,058 taped trials. The remaining 10% of the trials 192

could not be coded because officers stepped out of frame, the video was too dark, or 193

there were technical difficulties, leaving 3,656 trials. 194

Given that past research on the decision to shoot using controlled laboratory tasks 195

has focused on the observed decision and the response time associated with the shooting, 196

we present full analyses of these measures here in the main text. More detailed analyses 197

involving the other measures are presented in the Supplemental Online Materials. 198

Analytic Approach 199

Behavioral Modeling 200

Decisions were analyzed using multilevel logistic regression with suspect race (White, 201

Black), object (gun, nongun), behavior (antagonistic, nonantagonistic), and their 202

interactions as fixed effects. Response times for armed targets were analyzed using 203

multilevel linear regression with suspect race and behavior as a fixed effect. We 204

modeled the variability between participants by including random intercepts for officers. 205

Initial examination of the data revealed sizeable heterogeneity in behavior between 206

scenarios and suspects. To determine how to model the variability best, we conducted a 207

model comparison between different models, identifying the model that best performed 208

according to leave-one-out (LOO) cross-validation (see Supplemental Online Material). 209

For the error rates, the best-performing model had random intercepts for scenarios and 210

suspects and random slopes for the conditions nested within scenarios. For response 211

times, the best-performing model had random intercepts for each unique scenario by 212

suspect behavior combination (i.e., video). But, the model with random intercepts for 213

scenarios and suspects and random slopes for the conditions nested within scenarios had 214

a nearly indistinguishable fit (i.e., within the margin of error) and provided the same 215

conclusions. Thus, for all behavioral modeling in the main paper, we report the model 216

with random intercepts for scenarios and suspects and random slopes for the conditions 217

nested within scenarios. In the main paper, we report the credible effects and the 218

credible contrasts. The OSF site reports summaries of each of the estimated models. 219

The summaries include estimates of the posterior distribution of the regression 220
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coefficients, estimates of the mean error rates, and response times for each manipulated 221

condition. We also include estimates of the race effect for the object by suspect 222

behavior condition. 223

These multilevel models were estimated with Markov Chain Monte Carlo (MCMC) 224

methods implemented via the rstanarm package (32) in R. This program enables full 225

Bayesian statistical inference using an estimation approach (33). We ran four chains 226

using the MCMC sampler to draw from posterior distributions of parameters, with 9000 227

samples per chain (to ensure an effective sample size of >10000 for each coefficient), and 228

a burn-in of 1000 samples. We investigated the convergence of posteriors through visual 229

inspection and the Gelman-Rubin statistic (34). We used the default weakly informative 230

priors in rstanarm (version 2.32.1). We report the posterior predicted mean of the 231

parameter or statistic of interest and (in brackets) its 95% Highest Density Interval 232

(HDI; 33). The HDI summarizes the posterior distribution such that values within the 233

95% HDI indicate the most credible values. Thus, we use the term credible throughout. 234

Cognitive Modeling 235

We used computational modeling to understand officers’ underlying decision processes. 236

A formal cognitive model uses mathematical language to specify how basic cognitive 237

processes give rise to a phenomenon of interest (35; 36). This approach synthesizes 238

these hypothetical processes in an observable and testable form. In this case, we used 239

the Diffusion Decision Model (DDM; 37). The basic DDM models the decision process 240

as an evidence accumulation process and decomposes this process into four 241

psychological parameters (Table 1). According to the DDM, participants deciding 242

whether to shoot or not begin with an initial bias toward one option or the other as 243

indexed by the parameter β. This bias forms a start point from which participants 244

begin accumulating evidence. They accumulate evidence by repeatedly sampling 245

relevant information from the environment. The drift rate δ describes the average 246

strength of the evidence in each sample, thus capturing the average rate at which 247

evidence evolves toward the options. When the evidence reaches a threshold, the 248

corresponding option is chosen. The parameter α describes the separation between the 249

thresholds, indexing the amount of evidence required to make a decision. Finally, the 250

model assumes there are contaminants to response times beyond the deliberation time 251

captured by the evidence accumulation process. These contaminants are captured by 252

the Non-Decision Time (NDT ′) parameter. The parameters of the model have been 253

validated at the cognitive level (e.g., 38) and to some extent the neural level (for a 254

review see 39). Moreover, the DDM has been established to accurately describe the 255

decision to shoot in simplified laboratory shooting tasks (8; 11; 40). 256

One limitation of the DDM is that it is usually used to model two-choice tasks. Yet, 257

in both the ISS and the field, officers register only one explicit response: to shoot. This 258

different response mode does not necessarily imply a different process. Work in cognitive 259

psychology has shown that when people make go/no-go decisions, they use the same 260

evidence accumulation process as when making two-alternative forced-choice decisions. 261

The no-go response (in this case, “Don’t Shoot”) is an implicit response (41; 42). That 262

is, the “Don’t Shoot” response is made at some point but is just not explicitly known. 263

We incorporated this assumption into the model, treating the data as missing or 264

censored and modeling this missing data (see the Supplemental Online Material for 265

details). We refer to our revised model as the GoDDM. See Figure 1 for an illustration 266

of the GoDDM process and Table 1 for a description of the model parameters. 267

We used hierarchical Bayesian methods to estimate the GoDDM (33; 43; 44). This 268

approach simultaneously models individual and group level parameters, making it 269

possible to estimate the model in this dataset where a larger number of officers 270

complete a smaller number of trials. This approach also allowed us to model the 271
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Table 1. Parameters of the Go Diffusion Decision Model and Their
Substantive Interpretations.

Drift Diffusion Model Parameter Description

Relative start point (β) The location of the starting point for evidence
accumulation relative to the thresholds, with
0 < β < 1. The relative start point indexes an
initial bias for either response, with values of
β greater than .5 indicating a bias to choose
“Shoot” and values lower than .5 indicating a
bias to not shoot.

Threshold separation (α) The separation between the thresholds, with
0 < α. With this parameterization, the choice
threshold for “Shoot” is set at α, and the choice
threshold for the “Don’t Shoot” (unobserved)
option set at 0. The threshold separation de-
termines how much a person trades accuracy
for speed (i.e., the speed–accuracy tradeoff),
with larger values indicating more accurate but
slower decisions.

Drift rate (δ) The average strength in evidence at each unit
of time, with −∞ < δ < ∞. The sign of the
drift rate indicates the average direction of
the incoming evidence, with negative values
indicating evidence in favor of “Don’t Shoot”
and positive values indicating evidence in fa-
vor of “Shoot.” The magnitude of the drift
rate characterizes the quality of the incoming
information.

Relative non-decision time (NDT ′) Proportion of response time (relative to the
minimum observed response time) spent on
processes unrelated to decision-making, with
0 < NDT′ < 1. The non-decision time includes
the time spent on encoding the stimulus, exe-
cuting a response, and any other contaminant
process.

implicit “Don’t Shoot” response by imputing missing response time data. 272

Parameter recovery Model recovery analyses confirmed that the Bayesian 273

framework and experimental design allowed for relatively accurate recovery of GoDDM 274

parameters (see Supplemental Online Material). Due to the smaller sample size per 275

condition, the recovery analyses suggest a small underestimation of the relative start 276

point (∼ .03) and a small overestimation of the threshold separation (∼ .05). Moreover, 277

the recovery of the between-participant variability parameter for the relative start point 278

was poorly recovered. Part of the imprecision, particularly in the threshold separation, 279

appears to arise from using a random-walk approximation of the diffusion process to 280

simulate the models; the other part of the imprecision is due to the small samples per 281

condition at the individual level. We designed the recovery analysis to also ask if there 282

was an effect of race in a subset of conditions (e.g., nonantagonistic), would we be able 283

to recover the difference? We ran two models, one with a race effect in the relative start 284
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point and another model with a race effect in the drift rate. In both cases, we coded the 285

effect to be about 0.75 difference in terms of standardized mean difference (in terms of 286

between-participant standard deviation). In both cases, we could recover the difference 287

with a high degree of accuracy. Overall, the accuracy of the parameter recovery — 288

particularly between conditions — shows that the order and magnitude of the 289

parameters were maintained. This means the sign of the difference is maintained and 290

the magnitude of the difference is maintained (i.e., a low Type S and Type M error rate) 291

(45; 46). Thus, even if a credible effect may not be found the values of the parameters 292

carry information speaking to the effect. 293

Model comparison We parameterized the GoDDM to investigate how object, 294

suspect race, and suspect behavior impacted each model parameter (Table 1). We 295

started with a base model that allowed the start point and threshold to vary by race 296

and the drift and non-decision time to vary by race and object. All the parameters 297

modeled participant-level variability as a random intercept. This base model reflects the 298

model that has the best-modeled choice and response times in the laboratory-based 299

first-person shooter tasks (8; 47). Our behavioral analyses highlighted the importance of 300

modeling the heterogeneity in behavior due to differences in the scenario and suspect. 301

Model recovery analyses showed it was impossible to incorporate scenario and suspect 302

effects in each of the four process parameters and accurately recover the values. 303

Therefore, we carried out a model comparison to ask in what process parameter the 304

effect of scenario and suspect should be isolated. The full comparison is reported in the 305

Supplementary Material. Briefly, We compared several different GoDDM models, asking 306

what parameters these situational factors primarily influenced. We made model 307

comparisons using the Deviance Information Criterion (DIC; 48). This information 308

criterion metric is useful for hierarchical models and penalizes complexity models. 309

Focusing first on the effect of the scenario, the best model isolated the effect of the 310

scenario on the relative start point. In terms of suspect effect, the best model isolated 311

the effect of the suspect on the relative start point. We then coded a final model that 312

had variability in the relative start point for both the scenario and suspects (as well as 313

officers). This model had a worse fit (according to DIC) than the model with variability 314

in the start point for suspects and not the scenarios. Nevertheless, we used the full 315

model with variability in the scenario in the relative start point for both scenarios and 316

suspects as the measurement model in the analysis below. We made this decision to (a) 317

align the analyses with the behavioral analyses and (b) also to reflect our a priori belief 318

that the scenario contributes to this variability. 319

Results 320

We analyzed our data at the behavioral and cognitive levels. The behavioral level 321

focuses on error rates and response times for armed suspects. The cognitive model uses 322

the GoDDM model to estimate the process-level parameters that generate the choices 323

(i.e., errors) and response times. 324

Behavioral Analyses 325

We start by analyzing the behavioral data of errors and response times in the decision 326

to shoot. We analyze error rates and responses with Bayesian hierarchical models. We 327

model the variability between participants by including random intercepts for officers. 328

Model comparisons (see Analysis; Supplementary Material) reveal that the most useful 329

models for accounting for scenarios and suspects were models with random intercepts 330

for scenarios and suspects and random slopes for the conditions nested within scenarios. 331
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Fig 2. (A) Effect of object and race on errors for nonantagonistic and antagonistic
suspects at the group level (solid black outline) and individual level (light grey). (B)
Effect of object and race on response times for nonantagonistic and antagonistic
suspects at the group level (solid black outline) and individual level (light grey).
Non-greyed markers indicate mean posterior estimate and bars indicate 95% HDI. All
group-level estimates were calculated from the group-level posterior predicted
distributions from the hierarchical models.

Error rates 332

Figure 2A shows the error rate by suspect race, presence of weapon, and suspect 333

behavior. There was a credible three-way interaction between suspect race, weapon 334

presence, and suspect behavior b = 2.21, [0.37, 4.09]. This interaction was driven by the 335

effect of race on unarmed, nonantagonistic suspects. Unarmed nonantagonistic Black 336

suspects were more likely to be shot than unarmed nonantagonistic White suspects 337

(M = 1.52, [0.17, 2.88]), but there was no credible difference between Black and White 338

nonantagonistic armed suspects or when the suspects were antagonistic. 339

At first glance, this three-way interaction between race, object, and suspect behavior 340

appears consistent with past work where the decision to shoot is based on threat 341

perception and race provides information about threat under ambiguous circumstances 342

(7). When the suspect acts nonantagonistically, negative stereotypes of race may drive 343

this threat perception; in the antagonistic condition, the behavior determines threat 344

perception, minimizing the effect of race. However, there was not a credible increase in 345

error rates in the antagonistic (M = 2.7%, [0.7,5.2] ) vs nonantagonistic condition 346

(M = 3.1%, [0.9,6.0]; b = 0.137 [-0.771, 1.017]). Moreover, exploring the data further 347

suggests that part of this interaction may be due to particular behaviors of some actors 348

in specific scenarios. We explore this speculation further, but first, we report the 349

corresponding analyses with response times. 350

Response times 351

Figure 2C displays officers’ response times to shoot armed suspects by suspect race for 352

nonantagonistic and antagonistic behavior. There was no credible effects of the 353

manipulations on the response times. 354
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Additional behavioral measures 355

We measured several other behaviors during the immersive shooting simulator. These 356

behaviors were the number of shots fired, whether the officer reached or grabbed for the 357

gun, and the time at which they reached for the gun. We report these results in the 358

Supplementary Material. We only found a credible effect of race in terms of the number 359

of shots fired. A Poisson regression revealed a credible three-way interaction between 360

suspect race, weapon presence, and suspect behavior b = 0.552, [0.152, 0.947]. This 361

interaction was driven by the effect of race on nonantagonistic unarmed suspects. More 362

shots were fired for unarmed nonantagonistic Black suspects (M = 2.38 [1.72, 3.07] 363

than unarmed nonantagonistic White suspects (M = 1.62 [1.19, 2.04]; M = 0.39, [0.07, 364

0.68]). There was no credible effect of race for nonantagonistic armed and antagonistic 365

suspects. 366

Scenario and suspect effects 367

We sought to understand the interactions between race, object, and suspect behavior 368

across the scenarios and suspects. Figure 3 plots the error rates and response times at 369

the level of the scenarios for each condition. Figure 4 does the same for each suspect. 370

As the figures show, there was a fair amount of heterogeneity at the scenario level and 371

the suspect. Regarding error rates, Figure 3 shows the effect for unarmed, 372

non-antagonistic Black suspects isolated primarily to the alley and pullover scenarios. 373

In these videos, the actors draw their wallets in a manner that mimics the drawing of a 374

gun. Figure 4 shows the heterogeneity at the suspect level. Unfortunately, the 375

experimental materials make it difficult to separate the suspect from the scenario as a 376

given suspect was in at most two scenarios.2 377

As described earlier, there is evidence that real-world decisions to shoot are 378

influenced by situational factors. The ISS makes it possible to quantify how much the 379

decision to use deadly force is associated with the situation or suspect behavior. We 380

tested this by calculating intra-class correlations (ICCs) to assess how much variation in 381

behavior was associated with officers, policing scenarios, and suspects in general. 382

Variability in the decision to shoot was primarily associated with scenarios (M = .19 383

[.05, .38]) and suspects (M = .12 [.05, .22]). Less variability was associated with officers 384

(M = .07 [.04, .09]). In contrast, for shooting response times, variability was primarily 385

associated with officers (M = .19 [.15, .24]) and scenarios (M = .14 [.03, .30]), rather 386

than suspects (M = .11 [.05, .19]); some officers were faster to shoot than others. 387

Summary 388

Overall, the behavioral results reveal that many features of the decision situation, 389

including policing scenario, suspect race, and suspect behavior, impact the behavioral 390

decision to shoot. We next used cognitive modeling to understand how these factors 391

impacted the decision process as measured by the parameters of the GoDDM (see Table 392

1). 393

Cognitive Modeling: GoDDM Analyses 394

To examine the cognitive processes underlying officers’ deadly force decisions, we 395

adapted the Bayesian Diffusion Decision Model (DDM) framework used for the 396

first-person shooter task (8; 11) for the immersive shooting simulator. See Figure 1 for 397

an illustration of the GoDDM process and Table 1 for a description of the model 398

2For the alley and night pullover scenarios, the Black actors only appeared in those scenarios (suspects
3 and 4 in the alley scenario, suspects 1 and 2 in the pullover scenario). In the alley condition the White
suspects only appeared in that scenario.
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Fig 3. (A) Error rates by scenario split by whether the suspect was unarmed or armed
and acting nonantagonistically or antagonistically. (B) Mean response times by scenario
split by whether the suspect was unarmed or armed and acting nonantagonistically or
antagonistically. Error bars are 95% confidence intervals.

parameters. The decision to shoot is a go/no-go decision where participants must 399

respond to one option (shoot) but withhold their response to another (don’t shoot) (49). 400

Extensive modeling work has shown that people in a go/no-go procedure use the same 401

evidence accumulation process as when they complete a two-alternative forced-choice 402

task (41; 42). The difference is that the no-go response (i.e., “Don’t Shoot”) is implicit 403

(41). That is, participants do decide not to shoot at some point, but its timing is not 404

explicitly known. In our Bayesian framework, we implemented this implicit boundary 405

for the “Don’t Shoot” response by treating the response time for this response as 406

missing data. This was done by explicitly modeling the probability that the response 407

time was missing, which in this case was the probability of a “Don’t Shoot” response 408

(33). Model recovery analyses confirmed that the model parameters can be accurately 409

recovered for this adaptation of the DDM, the GoDDM, with the experimental design 410

used in this study (see Supplemental Online Material). 411

The GoDDM was parameterized to examine how suspect race, suspect behavior, and 412

their interaction impacted each parameter. We modeled participant-level variability by 413

treating participants as a random intercept for each process parameter. Our behavioral 414

analyses highlighted the importance of modeling the heterogeneity in behavior due to 415

differences in the scenario and suspect. Model recovery analyses showed it was 416

impossible to incorporate scenario and suspect effects in each of the four process 417

parameters and accurately recover the values. Therefore, we carried out a model 418
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Fig 4. (A) Error rates by suspect split by whether the suspect was unarmed or armed
and acting nonantagonistically or antagonistically. (B) Mean response times by split by
whether the suspect was unarmed or armed and acting nonantagonistically or
antagonistically. Error bars are 95% confidence intervals.

comparison to ask in what process parameter the effect of scenario and suspect should 419

be isolated. The model comparison revealed that the effect of scenario and suspect was 420

in terms of the relative starting point. We use this full model to examine the 421

manipulations of race and suspect behavior on the process parameters. 422

Process parameters 423

Figure 5 plots the group-level estimates for each of the parameters of the GoDDM by 424

the race of the suspect and whether the suspect behaved antagonistically. One key 425

aspect that this cognitive-level analysis highlights is that the effects of race and suspect 426

behavior do not have selective influence on a single parameter in the GoDDM. Instead 427

these factors give rise to a constellation of effects on the decision process of officers. 428

Relative start point In terms of the relative start point β, officers showed no initial 429

bias to shoot Black suspects, M = -0.005 [-0.037, 0.028] (Figure 5A). In contrast, there 430

was a credible effect of the suspect’s antagonism on the initial bias, with officers 431

starting closer to “Don’t Shoot” for antagonistic versus nonantagonistic suspects, M = 432

-0.056 [-0.073, -0.037]. It could be that this drop in the relative start-point reflects 433

officers trying to be strategically hesitant to shoot with suspects who are being 434

antagonistic but, as of yet, have not pulled an object. With respect to the race effect 435

found in the behavioral analyses, these results suggest that increased errors to shoot 436
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Fig 5. Diffusion model parameters. (A) Group level estimates of relative start point by
race for nonantagonistic and antagonistic suspects. (B) Group level estimates of
threshold separation by race for nonantagonistic and antagonistic suspects. (C) Group
level estimates of drift rate by object type for White and Black suspects and
nonantagonistic and antagonistic suspects. (D) Group level estimates of relative
non-decision time by object type for White and Black suspects and nonantagonistic and
antagonistic suspects. Markers indicate mean posterior estimate and bars indicate 95%
HDI.

Black unarmed, nonantagonistic suspects did not result from officers having an initial 437

bias to shoot Black suspects before the moment the object was visible. This lack of an 438

effect also is inconsistent with the explanation that race impacted threat assessment 439

throughout the interaction in the nonantagonistic condition by pushing officers closer to 440

the “Shoot” decision prior to the object being presented. 441

Threshold separation Figure 5B summarizes the posterior estimates of the 442

group-level threshold separation parameter. This parameter measures the amount of 443

evidence officers sought to collect and thus can index their overall caution. It shows a 444

credible interaction between race and suspect behavior, M = -0.344 [-0.408, -0.278]. 445

Specifically, compared to nonantagonistic White suspects, officers had a credibly lower 446

threshold separation for nonantatonistic Black suspects, M = -0.210 [-0.298, -0.121]. 447

Conversely, for antagonistic suspects, officers had a credibly higher threshold separation 448

for antagonistic Black suspects, M = 0.479 [0.385, 0.574]. Taken together, this pattern 449

implies that how cautious officers were with suspects during the task depended on their 450

race and how the suspects behaved, with officers showing more caution with Black 451
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suspects acting antagonistically and less caution with Black suspects behaving 452

non-antagonistically. At the behavioral level, while not a credible difference, this 453

explains the slower responses officers tended to have for armed Black antagonistic 454

suspects (M = 989 ms [762,1,222]) compared to White antagonistic suspects 455

(M = 825 ms [661,996]). 456

Drift rate Figure 5C summarizes the posterior estimates of the group-level drift-rate 457

parameter. This parameter captures the rate and direction of evidence accumulation 458

indexing the strength of the evidence towards shooting or not that officers extracted 459

from the scene. 460

The effects of race and suspect behavior on the drift rate correspond closely to the 461

observed error rates. In particular, there was a credible three-way interaction between 462

race, object, and suspect behavior, M = -0.216 [-0.276, -0.156]. This three-way 463

interaction was due to officers showing a stronger drift rate towards not shooting 464

unarmed nonantagonistic White suspects compared to the corresponding Black suspects, 465

M = -0.690 [-0.794, -0.587]. Further comparisons revealed that, relative to the 466

antagonistic counterparts, there were two distinct effects for White and Black suspects. 467

For White suspects, officers showed stronger drift rates toward not shooting unarmed 468

non-antagonistic suspects vs. antagonistic suspects (M = -0.447 [-0.544, -0.352]). 469

Conversely, for Black suspects, officers showed weaker drift rates toward not shooting 470

unarmed non-antagonistic suspects vs. antagonistic suspects (M = 0.243 [0.167, 0.318]). 471

Notably, this difference between nonantogonistic and antagonistic unarmed suspects 472

is almost twice as large for Whites vs. Blacks (M = 1.90 [1.13, 2.77]). This is consistent 473

with race being used as a cue in deciding to shoot, perhaps as a way to disambiguate an 474

ambiguous situation. More broadly, this effect of race in the drift rates combined with 475

the decreased threshold separation for Black nonantagonistic suspects can explain the 476

increased error rate for these suspects. There were no other credible differences between 477

the drift rates. 478

Non-decision time Figure 5D summarizes the posterior estimates of the group-level 479

non-decision time parameters. This parameter captures the amount of time relative to 480

the smallest observed response time that was due to other processes besides deliberation 481

such as visual search or response selection. The estimates show that response times had 482

greater levels of contaminants for Black (vs. White) unarmed suspects behaving 483

nonantagonistically, M = 0.07 [0.02, 0.12]. But, the opposite was true of unarmed 484

antagonistic suspects, M = -0.10 [-0.16, -0.06]. 485

Cognitive Modeling: Scenario and Suspect Effects 486

As we discussed, the model accounted for scenario and suspect effects as impacting the 487

relative start point. Figure 6 plots the relative start points across the scenarios. These 488

estimates reveal that officers showed a credible bias to shoot in scenarios where there 489

was a greater risk of threat in the period leading up to the decision to shoot. This 490

included scenarios where suspects had a warrant for their arrest (alley and sidewalk 491

scenarios) and the only scenario where a suspect was carrying a non-gun object that 492

could be used as a weapon (a crowbar used in the warehouse scenario). The GoDDM 493

data map onto the behavioral data; officers were faster to shoot armed suspects in the 494

warehouse and sidewalk scenarios than in other scenarios and more errors in the alley 495

(Figure 2). 496

The relative start points for each suspect are plotted in Figure 7 when the actor was 497

acting antagonistically or not. This figure emphasizes the amount of variability at the 498

process level that is driven by the different suspects (independent of race and whether 499
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Fig 6. Relative start points for each of the scenarios. Dots indicate mean posterior
estimate and bars indicate 95% HDI.

they behaved antagonistically or not). In fact, one can see just how much more 500

variability there is between suspects in terms of the relative start points they 501

engendered as compared to the other manipulations. 502

Fig 7. Relative start points for each of the suspects. Markers indicate mean posterior
estimate and bars indicate 95% HDI.

Summary 503

Taken together, the GoDDM helps isolate at the cognitive level how the numerous 504

factors influencing the behavioral decision to shoot enter the decision process. Analyses 505

suggest that when race enters the decision process, it is not via changes to the initial 506

proclivity to shoot but as information that is accumulated as officers decide to shoot. 507

But, this use of race as information was limited to a specific condition: when a suspect 508

was acting in a nonantagonistic manner. At the same time, officers appear to respond 509

to the race of the suspect in the ISS by adjusting their threshold widening their 510

threshold separation in a very charged situation when the suspect was acting 511

antagonistically. This combination of effects explains the increased error rate for 512

unarmed Black suspects acting nonantagonistically and slower response times for Black 513

suspects acting antagonistically. At the same time, the GoDDM also helps model how 514

situational factors like the scenario and the suspect’s general characteristics enter the 515

decision process. In this case, these factors change the relative start point or the 516

August 10, 2024 16/25



officer’s initial proclivity to shoot. 517

Discussion 518

We used an immersive shooting simulator and cognitive modeling to understand officers’ 519

deadly force decisions. This unique combination allowed us to investigate how policing 520

scenario, suspect behavior, and race impact the decision process. 521

The behavioral analyses suggest the following primary conclusions. First, a 522

three-way interaction between race, object, and antagonistic behavior was observed such 523

that officers were more likely to incorrectly shoot unarmed Black suspects acting 524

nonantagonistically relative to the corresponding White suspect. We also observed a 525

similar effect regarding the number of shots fired. There were no effects of race or 526

suspect behavior on the response times. As we discuss next, our computational 527

cognitive model—the GoDDM—isolates the cognitive mechanism driving this result to 528

the information officers extracted from the scene during these trials. Importantly, we 529

also found that across all the trials, there was substantial variability in shooting 530

decisions related to scenarios and suspects, with the race effect varying across specific 531

scenarios and actors. 532

The process-level analyses provide a deeper understanding of the decision to shoot in 533

a way that is not obvious from the behavioral data alone. Although increased errors in 534

shooting unarmed suspects might have reasonably been predicted due to officers being 535

more likely to shoot before encountering the object, the DDM analysis isolates this 536

effect to the type of information accumulated (i.e., the drift rate) and how much 537

information was accumulated (i.e., the threshold separation). Specifically, for 538

nonantagonistic suspects, drift rates (i.e., the rate of evidence accumulation) pointed 539

more strongly toward not shooting unarmed White suspects and more strongly toward 540

shooting unarmed Black suspects. Combined with the lower threshold for accumulating 541

evidence for unarmed, nonaggressing Black suspects, this resulted in increased errors in 542

these conditions. 543

At the same time, behavior in the ISS also revealed the considerable role that 544

policing scenario and suspect behavior had on officers’ decisions to shoot. This ability 545

to study the decision to shoot during the more complex and realistic policing scenario 546

connects the existing psychology and criminal justice literature in a way that fills in the 547

weaknesses inherent in each research tradition. The ISS also expands beyond these 548

findings as it helps isolate at the process level how scenario and acting behavior enter 549

the decision. In particular, information about the policing scenario and suspect 550

behavior enter the decision to shoot via officers’ initial starting point of evidence (via 551

their relative start point) to be more likely to start the decision process closer to shoot 552

or not shooting. 553

Effects of Race on the Decision to Shoot 554

A distinct advantage of the ISS and the GoDDM is that they permit direct tests of 555

different hypotheses about how race (as well as other factors) enter the decision process. 556

Several hypotheses can be ruled out based on this framework. For instance, a common 557

hypothesis is that officers might have an initial bias to shoot a Black citizen; that is, 558

they might have a higher initial start point (β) to shoot Black suspects. The results 559

from the GoDDM do not support this hypothesis. Race did not impact the starting 560

point from which officers began to accumulate evidence, and if anything, officers shied 561

closer to an initial proclivity to not shoot for Black suspects. 562

Instead, the behavioral data in which officers were more likely to incorrectly shoot 563

unarmed, nonantagonistic Black suspects compared to White suspects is best explained 564
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by the effect of race on the evidence accumulation process δ. This was realized in a 565

stronger drift rate toward not shooting for unarmed, nonantagonistic White suspects 566

and a stronger drift rate toward shooing for unarmed, nonantagonistic Black suspects 567

(though still, on average, accumulating evidence toward not shooting). One possible 568

reason for this decrease could be perhaps because officers focused on other aspects 569

besides the object suspects held when those suspects were Black and nonaggressive. 570

Another possible reason — not necessarily inconsistent with this first reason — is that 571

stereotypes about Black males as violent may have made it more difficult to identify the 572

nongun object when held by a Black suspect. This is consistent with the literature on 573

stereotyping effects showing that stereotypes impact decisions only under conditions of 574

ambiguity and not when there is clear diagnostic information, as in the case when the 575

suspect is behaving antagonistically (50; 51; 52). A final possibility is that the drift rate 576

effect (and the corresponding behavioral effect) was driven by a small number of actors 577

behaving in specific ways. For instance, the videos in our study with a higher error rate 578

had actors that appeared to draw harmless objects in a manner similar to pulling a gun. 579

Further research is needed to understand this effect on drift rate more fully. 580

One might also speculate that the experimental context caused officers to feel 581

observed and adjust their decision processes, particularly for Black suspects. This is 582

certainly a possibility. According to the GoDDM, this would have been realized in one 583

of two ways. One way is for officers to have become hypervigilant for Black suspects, 584

increasing the sensitivity of their evidence accumulation for Black suspects (i.e., the 585

difference in drift rates (δ) between armed and unarmed suspects). This was not 586

observed. Another way officers might have responded to being watched is to increase 587

their response caution and collect more evidence for Black suspects. Yet this would 588

predict greater threshold separation (α) for Black suspects overall, whereas the race 589

effect appears to have differed depending on the antagonism of the suspect. Moreover, 590

threshold separation was largest when Black suspects were antagonistic. If officers were 591

worried about appearing biased by shooting Black suspects, this concern likely would 592

have manifested in the nonantagonistic cases; in the antagonistic cases, we suggest that 593

officers would have been less likely to feel concerned over incorrectly shooting a Black 594

target given that the aggression of the target would have provided a rationale for their 595

decision. 596

Limitations 597

The ISS is, of course, still a simulation. Officers know they will not die or face formal 598

consequences for incorrect decisions. Response options are also limited in the ISS, and 599

suspects cannot respond to officers. Officers’ actions (yelling at suspects) and 600

physiological responses (sweating) suggest they were invested in the experience and took 601

it seriously. Our results align with findings that situational and suspect-based measures 602

are strong predictors of police behavior (25; 53; 54; 55; 56; 57). Yet it is important to 603

acknowledge that this simulated method could measure a cognitive process distorted or 604

not represented in actual, more variable shooting situations. 605

We urge caution in generalizing these findings. We sampled a single department, and 606

nationwide variability exists in department policies and officer-involved shootings 607

(27; 58). Our sample also may be different from the general population of officers. 608

Although officers did not know the specific topic of study, self-selection is nevertheless 609

possible (59). Moreover, the data were collected in 2017. The worldwide Black Lives 610

Matter protests on police brutality (60; 61) that followed the killing of George Floyd 611

(62) has led to some reform (63), the consequences of which are not well established yet. 612

Similarly, we urge caution in generalizing beyond the specific scenarios used in our 613

version of the ISS. Just as with actual-officer-involved shootings, each scenario is unique, 614

and factors present in one situation may have different meanings in another. The fact 615
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that the ISS makes it possible to observe how many different officers respond to the 616

same scenario makes it possible to extract general behavioral properties from a given 617

scenario. Still, a richer theory about policing scenarios is needed to generalize to other 618

scenarios. 619

In addition, we focus specifically on the decision to shoot; our findings may not 620

generalize to other uses of force. A modest amount of the many policing situations that 621

occur involve armed citizens, and even within this subset, not all armed citizens are 622

deadly threats. Moreover, officers can respond to threats with various options, not just 623

deadly force. Here we focus on the specific case where officers have to identify objects in 624

the context of deadly force decisions quickly. Our conclusions should be constrained to 625

these situations. Finally, we used computational modeling to investigate cognitive 626

processes. This is one powerful method to get at the process level, but there are other 627

approaches, including neural (e.g., 64), eye tracking (e.g., 40), and think-aloud or 628

protocol analyses (65) that could also be used to study these critical decisions. 629

Conclusion 630

We used an immersive shooting simulator to understand officers’ deadly force decisions 631

and to investigate how race, variation in policing scenario, and suspect behavior impact 632

the decision process. The ISS can advance our understanding of fatal police shootings 633

by combining the control and precision of standard laboratory tasks with the policing 634

variables known to be important from actual officer-involved shootings. Of importance, 635

a suspect’s behavior and policing scenario had large effects on the decision to shoot, and 636

these factors exerted their influence at the process level by affecting officers initial 637

proclivity to shoot. ??. 638

Supporting information 639

S1 Fig. Number of shots fired by race. Dots indicate mean posterior 640

estimate and bars indicate 95% HDI. 641

S2 Fig. Probability of officer grabbing the gun. Dots indicate mean 642

posterior estimate and bars indicate 95% HDI. 643

S3 Fig. Time for officer to grab the gun relative to the start of the 644

scenario. Dots indicate mean posterior estimate and bars indicate 95% HDI. 645

S4 Fig. Observed and posterior predicted proportion of trials an officer 646

shot in each condition. The observed average proportion are the ×, the 647

small grey circles are the observed proportion for each officer with a 648

distribution estimated over top those dots in light grey, the large red circles 649

are the mean posterior predicted proportion, and the bars denote the 95% 650

HDIs for the posterior predicted distribution across participants and trials. 651

Note the posterior predicted distributions have been adjusted to account for 652

the number of trials each officer completed. 653

S5 Fig. Observed and posterior predicted quantiles of the response times 654

in each condition. The observed quantiles are the Xs, the large red circles 655

are the mean posterior predicted quantile, and the bars denote the 95% 656

HDIs for the posterior predicted distribution. 657
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S1 Table. Suspect race and scenario appearance.. 658

S2 Table. Comparison of models of different models of scenario and actor 659

variability for the error rates. 660

S3 Table. Comparison of models of different models of scenario and actor 661

variability for the response times of armed suspects. 662

S4 Table. Intra-class correlations for outcome variables. 663

S5 Table. Summary of the parameter recovery analysis for two versions of 664

the GoDDM. 665

S6 Table. DIC for models with different effects of scenario and suspect on 666

the process parameters. 667
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